
PANDAVESWAR COLLEGE

DEPARTMENT OF PHYSICS

30 HOURS ADD-ON COURSE IN BASIC ELECTRONICS

Å

DIGITAL LOGIC

SYLLABUS

OBJECTIVE:

The basic objective of this Course is to provide an insight into the theories, theorems and basic sof Electronics and the theory of the terms of terms of the terms of tDigitalLogicDesign.ThestudentswouldgetfamiliarwithElectrostatics,CurrentElectricityconcepts,Semicond uctors, Transistors of Circuits (both Combination and all types andSequential).Inthecourse, numerical problems solving and circuitdesigningwouldalsobelookedinto. Theknowledgeacquiredbystudentsthrough such a course will enable them toprepare in a better manner for PG Entranceexaminations also help and would them inCampusinterviews(ofnotonlyITcompaniesbutalsoElectricalEngineering companies).

DURATION:

30Hours add-on course (where one class (lecture): 1hour, two classes per week).

4 SYLLABUS STUCTURE OF THE ADD-ON COURSE:

MODULE	MODULETITLE	HOURS		
MODULE1	ELECTROSTATICS	4		
MODULE2	CURRENTELECTRICITY	5		
MODULE3	ELEMENTARY PHYSICS OF SEMICONDUCTORS	8		
MODULE4	MODULE4 DIGITALSYSTEMDESIGN			
MODULE5	TUTORIAL CLASS	3		
	30			

SYLLABUSOUTLINE:

MODULE1:ELECTROSTATICS[TIME: 4HOURS]

Coulombs law, Unit of charge, Electric field, Electric lines of force and their properties, Electric flux,Electric potential and potential difference, Gauss law (statement only), Application of Gauss law to findelectric field due to a charged sphere, Capacitor and its working, Types of capacitors, Capacitance and itsunits,Capacitanceofaparallelplatecapacitor(formulaonly),Seriesandparallelcombinationofcapacitorsformula(relatednumericalp roblems), Dielectricand itseffect oncapacitance, Dielectricbreak down.

MODULE2:CURRENTELECTRICITY[TIME : 5 HOURS]

ElectricCurrent and its units, Direct and Alternating current, Resistance and its units, Specific Resistance,

Conductance, Specific conductance, Series and Parallel combination of Resistances, Factors affectingResistance of a wire, Carbon Resistance and Colour Coding. Ohm's law, Kirchhoff's laws, Wheatstonebridge, Carrey Foster Bridge and its applications, Concept of Terminal Potential Difference and Electromotive force (EMF), Heating effect of current, Electric power, Electric Energy and its units (relatednumerical problems), Thermoelectric effect - Seebeck&Peltier effects, Thevenin's & Norton's Theorems(withoutproof) in Resistivenetworkonly&it'ssimple applications.

MODULE3: ELEMENTARYPHYSICSOFSEMI-CONDUCTORS [TIME: 8 HOURS]

IntrinsicandExtrinsicsemiconductors,P&Ntype,Diode&itsapplications:P-NJunctiondiodes,Biasingof a junction diode, Depletion region & its effect, Zener diodes & its applications, Diode as a rectifier,Types of diodes, LED, LCD, Principle of junction transistor, Current components of transistor, Modes of a transistor (CB, CE and CC) and their properties, I/O characteristics of a transistor in CE mode. Relationbetween $\alpha \& \beta$ -parameters of Transistor, Biasing of a transistor - Q point, Load line, Self-bias, fixed bias&collector to basebias.

Amplifiers:Concepts,Class A& B.

Inverters using Transistors-transfer characteristics and threshold voltages.Switchingcharacteristics of diodesand transistors-SCR& UJT.

PrincipleofFETandMOSFET,DepletionandEnhancedmodesofoperations,Characteristicsanddefinition of different parameters, Symbols and Application for switching functions, Concept of NMOS,PMOSand CMOS switch.

MODULE4:DIGITALSYSTEMDESIGN[TIME:10HOURS]

Combinational Circuits: Realization of AND , OR Gates using diodes and NOT Gate using transistors, Standard Gate Assemblies, IC chips packaging nomenclature, Half and Full Adder (3 & bit), Multi-bitadders– RipplecarryandCarryLookAheadAdder,Adder/Subtractor,BCD-Adder,Dataselectors/multiplexers – expansions, reductions, function realization, universal function realization, multi-function realization, Decoders: function realization, De-multiplexer and function realization, realization, Encoder,PriorityEncoder,ParitybitGenerator/checker,GrayCodeGenerator,CodeConverters,Keyboardencoder,Sevens

egment display unit, Comparators.

SequentialCircuits:ModelofSequentialcomputing,DifferencebetweenCombinationalandSequentialcircuit,RS-

Latch:usingNANDandNORGates,RSLatchasaStaticRAMCell,ProblemsofBasicLatchcircuits,DigitalClock-

DutyCycle,Risingtime,Fallingtime,ClockedFlipFlops-SR,JK,D,T,LevelTrigger and Edge Trigger, Excitation Functions of each flip-flops, Flip-flops with Preset and Clear,ApplicationofFlip-flops:AsynchronousCounter(UP/DOWN)upto4-

bitcounter, Decade Counter, Mod – n Counter, Finite State machine Model – State Transition Diagram and Table,

Synchronous Counters –different mod counters, Ring counter, Johnson's Counter, Registers, Registers with parallel load, ShiftRegisters.

MODULE 5: TUTORIAL [TIME: 3 HOURS]

LEARNINGRESOURCES

SL. NO.	TITLEOFTHEBOOK	AUTHOR(S)	PUBLISHER
1	ATextbookofElectrical Technology	B.L.TherajaandA.K. Theraja	S.Chand
2	ModernDigitalElectronics	RP Jain	TataMcGraw-Hill Education

3	Basic	Electronics,	Electricity	&	T.C.Tayal	HimalayaPublishing
	Electro	nics				

4 LESSON PLAN

	001/751/7
	Content
LECTURE-1(1HOUR)	Coulombslaw, Unitofcharge, Electricfield,
	Electric lines of force and their properties, Electricflux, Electricpotential and potential difference
LECTURE-2(1HOUR)	Gauss law (statement only), Application of Gausslaw to
	find electric field due to a charged sphere,
LECTURE-3(1HOUR)	Capacitor and its working, Types of
	capacitors,Capacitanceanditsunits,Capacitanceofapar
	allel platecapacitor(formula only)
LECTURE-4 (1HOUR)	Seriesandparallelcombinationofcapacitorsformula
	(related numerical problems),
	Dielectricanditseffectoncapacitance, Dielectricbreak
	down.
LECTURE-5(1HOUR)	ElectricCurrentanditsunits, DirectandAlternatingcurren
	t,Resistanceanditsunits,SpecificResistance,Conductanc e,Specificconductance, Series and Parallel
	combination
	ofResistances,FactorsaffectingResistanceofawire,
	CarbonResistanceand Colour Coding.
LECTURE-6(1HOUR)	Ohm's law, Kirchhoff's laws and applications.
LECTURE-7(1HOUR)	Wheatstone bridge,Carrey Foster Bridge and its
	applications,
	ConceptofTerminalPotentialDifferenceandElectromoti
	veforce(EMF)
LECTURE-8 (1HOUR)	Heatingeffectofcurrent, Electricpower, Electric
	Energyanditsunits(relatednumericalproblems),Thermo
	electriceffect -Seebeck&Peltiereffects
LECTURE-9 (1HOUR)	Thevenin's&Norton'sTheorems(withoutproof)
	in Resistive network only& it's
	simpleapplications.
LECTURE-10(1HOUR)	IntrinsicandExtrinsicsemiconductors,P&Ntype,Diode&i
	tsapplications:P-NJunctiondiodes,
	Biasing of ajunction diode
LECTURE-11 (1HOUR)	Depletion region & its effect, Zener diodes &
	itsapplications, Diode as a rectifier, Types of diodes,LED,LC.
LECTURE-12 (1HOUR)	Principleofjunctiontransistor, Current components of tra
	nsistor,Modesofa
	transistor(CB,CEandCC)andtheirproperties.

LECTURE-13(1HOUR)	I/OcharacteristicsofatransistorinCEmode.Relation between α & β-parameters of Transistor,Biasingofatransistor-Qpoint,Loadline,Self- bias,fixedbias &collector tobasebias
LECTURE-14(1HOUR)	Amplifiers:Concepts,Class A& B. InvertersusingTransistors–transfer characteristicsandthreshold voltages.
LECTURE-15(1HOUR)	Switchingcharacteristicsofdiodesandtransistors -SCR & UJT
LECTURE-16(1HOUR)	Principleof FET and MOSFET, Depletion and Enhanced modes of operations, Characteri stics and definition of different parameters
LECTURE-17(1HOUR)	SymbolsandApplicationforswitchingfunctions, Conceptof NMOS,PMOS and CMOSswitch
LECTURE-18(1HOUR)	RealizationofAND,ORGatesusingdiodesandNOT Gate using transistors, Standard Gate Assemblies,IC chipspackagingnomenclature
LECTURE-19(1HOUR)	HalfandFullAdder (3&bit), multi-bitadders – Ripplecarry and Carry Look Ahead Adder, Adder / Subtractor
LECTURE-20(1HOUR)	BCD-Adder, Dataselectors/multiplexers— expansions, reductions, function realization, universal function realization, multi-function Realization
LECTURE-21(1HOUR)	Decoders:functionrealization,De-multiplexerand functionrealization,Encoder,PriorityEncoder
LECTURE-22(1HOUR)	Parity bit Generator/checker, Gray CodeGenerator,CodeConverters,Keyboarde ncoder,sevensegmentdisplayunit,Comparators
LECTURE-23(1HOUR)	Model of Sequential computing, DifferencebetweenCombinationalandSequen tialcircuit,RS- Latch:usingNANDandNORGates,RSLatchas aStaticRAMCell,ProblemsofBasicLatch circuits.
LECTURE-24(1HOUR)	Digital Clock – Duty Cycle, rising time, Fallingtime, Clocked Flip Flops - SR, JK, D, T, LevelTriggerandEdgeTrigger,ExcitationFunctionsof eachflip-flop
LECTURE-25(1HOUR)	Flip-flopswithPresetandClear,Application of Flip- flops: AsynchronousCounter(UP/DOWN)upto4-bit counter
LECTURE-26(1HOUR)	DecadeCounter,Mod–nCounter,FiniteState machineModel–StateTransitionDiagramandTable
LECTURE-27(1HOUR)	Synchronous Counters – different mod counters, Ringcounter, Johnson's Counter, Registers, Reg isterswith parallel load, Shift Registers.

TUTORIAL CLASS -(3 HOURS)

EVALUATION POLICY FOR THE ADD-ON COURSE

The basic philosophy behind the Evaluation policy for this 30 Hours Add-on course is to objectively judge the participants (students) whether the concepts were understandable to them or not and whether they could apply these concepts to solve numerical and conceptual problems. The Evaluation would be done through 3 components –

- i) C1–Course-endAssessment-cum-Test(Written /Onlinemode)[TotalMarks:40]
- ii) C2–Viva-voce [Total Marks:5]
- iii) C3–Attendance[TotalMarks:5]

TotalMarksoftheEvaluationprocesswould be 50.

At the end of the Course, there would be a Course-end Assessment-cum-Test evaluation and a Viva based on the entire Course syllabus. Attendance Component Marks would be calculated based on the actual Attendance Percentage of the Student during the classes of the Course.

TABLE FOR QUALIFICATION

TOTAL SCORE (OUT OF 50)	GRADE
40 - 50	A – OUTSTANDING
30 - 39	B – EXCELLENT
20 - 29	C – VERY GOOD
BELOW 20	D – FAILED

GENERAL RULES AND REGULATIONS

- 1. Students must attend and appear for the Course-End Assessment-cum-Test Examination. If anystudent fails to submit the Course-End Assessment or fails to attend the Course-End Assessment Examination, the particularStudent wouldNOTBEELIGIBLE FORCERTIFICATE.
- 2. Students must attend and appear for the Course-End Viva. If any student fails to fails to attendtheCourse-EndViva, the particularStudentwouldNOTBEELIGIBLEFORCERTIFICATE.
- 3. TotalMarks ofCourseEvaluation will be50 Marks.
- 4. Minimum50%MarkshastobescoredtoreceiveanyCertificate.TherewillbeonlyONEAttempt allowedfor ethe Course-End Assessment-cum-Test.
- 5. TherewillbeNOPROVISIONforBacklogClearance.
- 6. GeneralRulesandRegulationsoftheCollegemustbefollowed withoutanyexception.